

HOMER Analyzer ISM 2450 MHz, R26 Waveguide

General Description

The HOMER-Series STH 2.45-GHz Analyzer (Fig. 1) is an automatic impedance and power measurement system based on the R26 (WR340) waveguide. The system works under the full-power operating conditions of magnetron-based microwave generators and measures both magnitude and phase of reflection coefficient as well as incident, reflected and absorbed powers and frequency. The system is designed for CW, high-ripple (Rectified) and Pulsed sampling modes. Peak working power is set at manufacture time as specified in the customer's order. The unit can be equipped with precision adapters to WR430 or WR286.

STH can be:

- Controlled from a personal computer or another controller via the following communication interfaces:
 - RS232 or RS422,
 - CAN (Controller Area Network),
 - Ethernet/IP.
- Integrated into a LabVIEW environment.

The system comes with its own software (Server) and documentation.

Fig. 1. HOMER Analyzer STH 1.7.

Principle of Operation

The HOMER Analyzer is based on the six-port reflectometer (SPR) principle. Reflectometers of this type are especially suitable for industrial applications where on-line monitoring and control under full working power is required. SPR is capable of measuring not only the complex reflection coefficient of the load but also the incident, reflected and absorbed powers. A frequency counter is also integrated with the system. The conceptual simplicity of SPR facilitates its stable and temperature-independent operation over long periods of time. The system parameters required for the computations are obtained in the process of factory-made calibration where a collection of impedance standards is connected in place of load. It is recommended for the best performance that the recalibration be performed each two years.

Modes of Sampling

HOMER supports three modes of microwave signal sampling: *CW*, *Rectified*, and *Pulsed*.

- **CW mode** is applicable to unmodulated signals with output power ripple not exceeding 15% of the peak value.
- **Rectified mode** is designed for slowly pulsing signals (up to several kHz repetition rate). Such signals are typical for magnetrons powered by economy power supplies which incorporate simple half-wave or full-wave rectifiers.
- **Pulsed mode** (optional) is intended primarily for sampling fast square pulse-modulated microwave signals with pulse widths down to 100 μ s.

The *Rectified* and *Pulsed* modes provide both instantaneous and mean values of the reflection coefficient and the powers.

HomSoft Windows Control, Visualization and Data Logging Software

The *HomSoft* control, visualization and data logging software (Fig. 2) significantly expands the system capabilities. The basic features include:

- Microsoft Windows® environment.
- Accurate measurement of complex reflection coefficient and its displaying in various formats, including
 - Magnitude
 - Return Loss
 - Polar Display
 - Oven diagram (Rieke-type chart)
 - Phase
 - VSWR
 - Smith Charts (Z and Y)
 - Frequency
- Measurement of incident, reflected, and absorbed powers and their displaying in various formats, including watts, decibels, percentage of incident power.
- Numerical readout of signal frequency, load reflection coefficient and power in various formats.
- Arbitrary shifting of the measurement plane.
- Saving measured data as tables (text files) or pictures (BMP, GIF, JPG).
- Periodic data logging of all measured quantities.
- Multiple windows enabling simultaneous observation of various quantities in different formats.
- Wide selection of appearances of displayed curves.
- Storing and retrieving of complete system settings tailored to particular tasks.
- DDE Server option enables other Windows applications to share measurement results.
- Extensive on-line help.

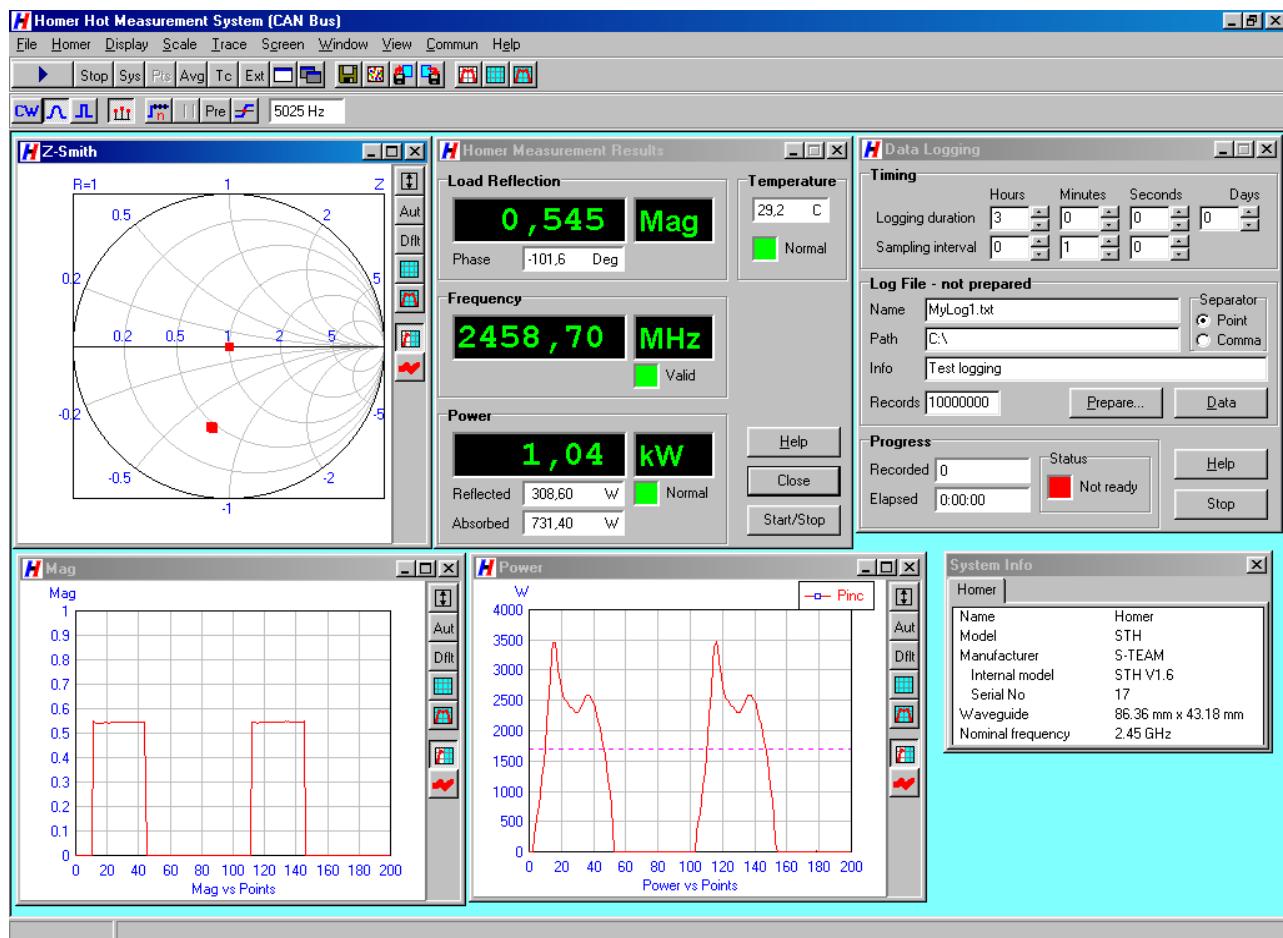


Fig. 2. Example of *HomSoft* graphical user interface.

Specifications

Electrical	
Waveguide type	R26 (WR340)
Flange type	IEC
Frequency range	2425 – 2475 MHz
Available maximum working power ^{1 2}	100 W – 30 kW
Dynamic range of working power	20 dB
Reflection coefficient measurement error (uncertainty circle radius)	0.05
Incident power measurement error (matched load)	±5 %
Power supply voltage	24 V ±10% DC
Current consumption	0.7 A
Interface	RS232, RS422, CAN, Ethernet/IP
Modes of signal sampling	CW, Rectified, Pulsed
Max acceptable ripple in CW mode	15 % of peak value
Max repetition rate of signal envelope in Rectified mode ³	10 kHz
Min pulse width in Pulsed mode	100 µs
Mechanical	
Mass	3 kg
Length	174 mm (6.85 in)
Width	138 mm (5.43 in)
Height	226 mm (8.90 in)
Surface finish	E-CLPS 4600
Environmental	
Operating temperature range	+5 to +55 °C
Storage temperature range	-10 to +70 °C
Optimal conditions for long term storage	+5 to +35 °C, humidity < 75%

Notes:

¹ Actual maximum working power is hardware-fixed according to customer's demand (must be within the Specifications limits). The actual minimum working power is 20 dB (= dynamic range) below the actual maximum working power.

² In Rectified and Pulsed modes, maximum power means **peak** power (not its mean value).

³ Signal envelope repetition rate (ripple frequency) f_e is determined by power line frequency f_p and rectification method. Examples: One-phase half-wave rectification $f_e=f_p$; one-phase full-wave rectification $f_e=2f_p$; three-phase half-wave rectification $f_e=3f_p$; three-phase full-wave rectification $f_e=6f_p$; three-phase Y+Δ half-wave rectification $f_e=6f_p$; three-phase Y+Δ full-wave rectification $f_e=12f_p$.

Configurations

Basic Configuration

- STH Basic Unit
- Internal firmware (Server)
- Calibration in 2425 – 2475 MHz band
- RS232 or RS422 serial interface
- CW and Rectified modes of sampling
- Operating handbook (pdf)
- Communication protocol manual (pdf)
- Set of standard cables⁴

Options

1. *HomSoft* Windows visualization and control software
2. Pulsed mode of sampling
3. n/a
4. CAN Bus communication interface (includes CAN Bus cable)
5. CAN-USB Adapter (to connect a PC to CAN Bus network)
6. LabVIEW HOMER Virtual Instruments Library
7. Dynamic Data Exchange (DDE) server in *HomSoft* Windows SW⁵
8. Technical support in hours (four hours are complimentary)
9. n/a
10. n/a
11. Ethernet/IP communication interface

Optional Power Supplies

- Traco Power TBL 150-124, 24V/6.25A, DIN rail mountable
- Electro-Automatik EA-PS-524-11T, 24V/10.5A, input 90-264 V, benchtop

Notes:

⁴ Set of standard cables includes DC power supply cable, RS232/RS422 cable, and (in case of CAN Bus) CAN Bus cable.

⁵ *HomSoft* Windows visualization and control SW option required.

Miscellaneous

CAN-USB Adapter. To connect your PC with a CAN Bus network (or with the STHT alone), either the [Peak PCAN-USB Interface](#) or [Sontheim CAN USB Light Dongle](#) adapter is needed. You can order it as an option. Another possibility is to buy the dongle yourself from the manufacturer (visit the links above).

LabVIEW HOMER Virtual Instruments Library enables HOMER monitoring and control from within the National Instruments' LabVIEW environment. The library consists of a collection of virtual instruments (Fig. 3) and includes several useful examples. The library enables users to integrate HOMER into their own applications with much less effort than trying to start from scratch by studying HOMER communication protocol and programming the complete communication.

DDE Server. DDE Server is a functionality within the *HomSoft* Windows visualization and control SW, and hence it needs the *HomSoft* option, too. The DDE Server enables another (customer's) Windows program, e.g., Microsoft Excel, to extract measurement results from running *HomSoft*.

Technical support. It often happens that new users, especially in the initial phase, need counsel about issues that are not directly the matter of HOMER itself but of their particular application, or about topics that are in fact described in the accompanying documentation. Four hours of such support are provided free of charge; additional support should be ordered.

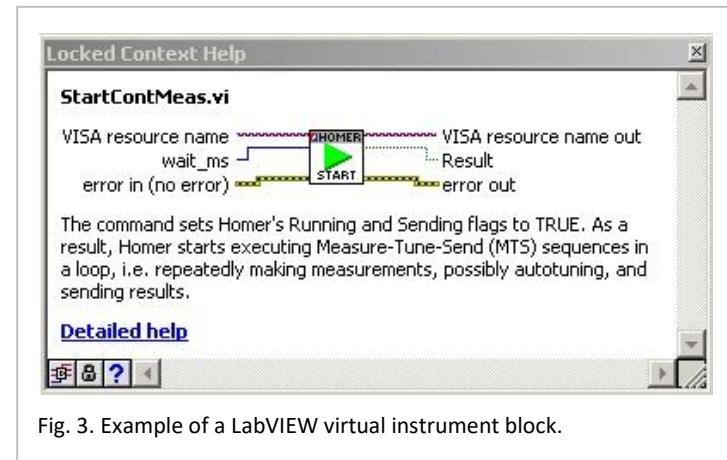


Fig. 3. Example of a LabVIEW virtual instrument block.

Dimensional Drawing

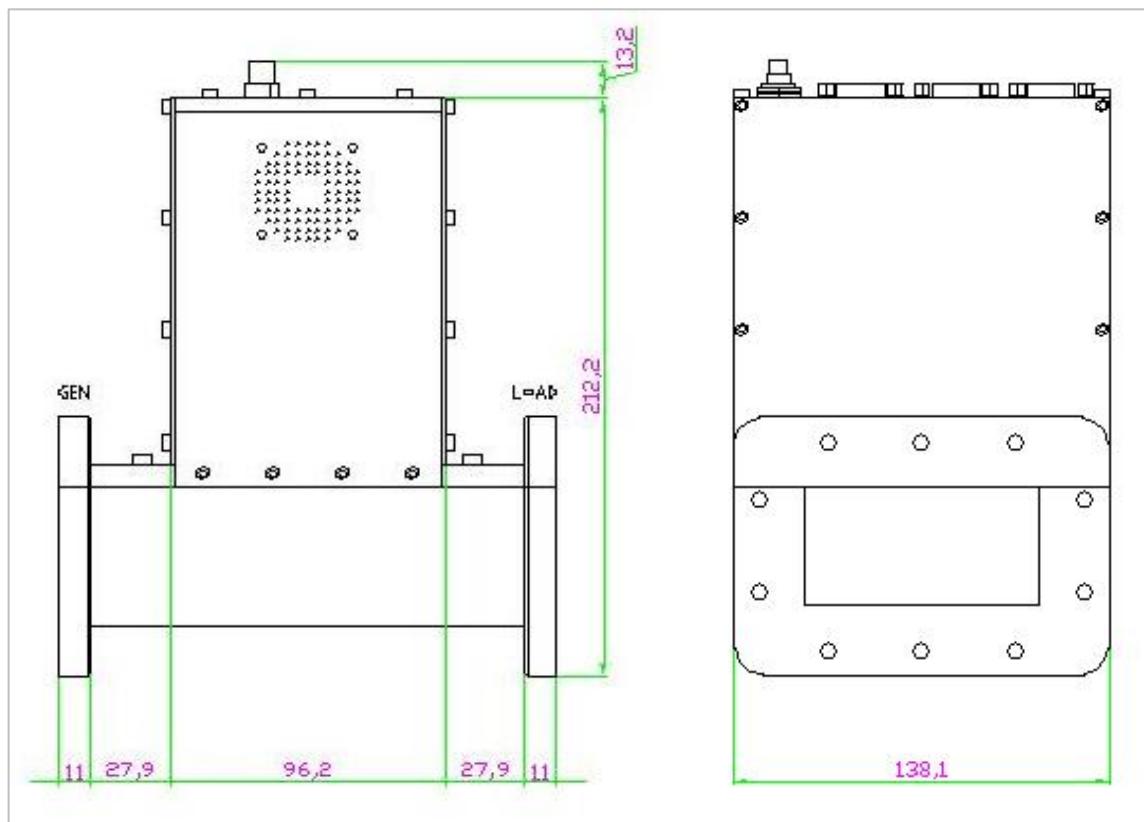


Fig. 4. Basic HOMER Analyzer STH 1.7 dimensions (in millimeters)